欢迎来到贝博平台体育app官网官方网站!
Product classification

产品中心

contact us

联系我们

产品描述

  另一方面,金泽工业大学教授三上指出,要想进一步提升光提取效率,光凭元件表面设置的光提取层是不够的(图7)。因为根据三上的模拟实验,元件内部产生的光子中,有约50%因表面等离子体共振而丧失。这种现象是在元件发光面的反面电极(阴极)表面发生的。

  据金泽工业大学教授三上介绍,没有对光提取做改进的有机EL元件内部产生的光有约50%以表面等离子体损失消失。三上等人发现了对金属电极采用薄电极和反射层等多级构造,可大幅度降低表面等离子体损失,来提升发光效率的方法。(图由《日经电子》根据三上的资料制作)

  三上认为,积极设法抑制这种(表面等离子体)损失,有助于进一步提升光提取效率,因此大胆改变了阴极的构造。这就是“多阴极构造”。试制的既具备这种构造又具备元件表面光提取层的绿色发光有机EL元件,其表面等离子体损失由约50%大幅降至约10%,发光效率由85lm/W提高到了2倍以上的185lm/W。光提取效率约为47%,作为薄型元件是很高的值。

  各厂商也开始针对元件阴极采取一定的措施。例如,东芝公司在SID 2012上发布的发光效率为91lm/W的元件,没有在元件正面一侧设置特别的光提取层。而是将阴极材料由原来的铝换成了其他高反射率材料。东芝称“并不能说明效率的提高全靠反射率,表面等离子体损失的降低等或许也发挥了作用”。

  提高有机EL照明发光效率的第三个重点是蓝色发光材料的大幅改善。此前,蓝色发光材料与红色和绿色发光材料相比,在发光效率和发光寿命上的开发很迟缓。比如,尚没有具备足够“深度”和发光寿命的磷光发光蓝色材料。

  光是深蓝色的话可通过萤光材料,但萤光材料原理上的内部量子效率还不到25%。而磷光材料最大高达100%。蓝色发光只可以使用萤光材料是进一步提升有机EL照明发光效率的巨大障碍。

  最近,能打破这种界限的研究开发取得了进展。虽然尚未发现深蓝色磷光发光材料。但“推进了第3代发光材料的开发”(九州大学最尖端有机光电子研究中心教授安达千波矢的研发小组)(图8)。第1代为萤光材料,第2代为磷光材料,而新材料为第3代。

  图中所示为超越此前激子利用效率为25%的萤光材料极限的两种技术。TTA/TTF通过使3重态状态(T1)的2个激子碰撞交换能量,变成1重态状态(S1)激子有可能发光(a)。而TADF以热使T1的激子移向S1有可能发光。(图(a)由《日经电子》根据出光兴产的资料制作,(b)由《日经电子》根据安达研究室的资料制作。(b)摄影:安达研究室)

  不过,新材料其实就是萤光发光材料。与以往的不同在于,具备将此前以热等形式散失的能量用于萤光发光的机制。该机制主要有两种。

  一种是九州大学安达的研发小组发现的“热活性型延迟萤光(TADF)”(图8)。从原理上来说,材料的内部发光效率可实现100%。截至目前已经确认实现了62%。最近还开发出了名为“pure blue”(安达研究室)的深蓝色TADF材料。

  另一种是出光兴产公司和住友化学公司等正在开发的在萤光材料中发生称为“3重态-3重态消灭”(TTA)或“3重态-3重态融合”(TTF)现象的机制(图8))。出光兴产称为TTF,住友化学称为TTA。同一种现象有两种名称是因为,以前在磷光发光材料中增加电流密度时,TTA是导致发光效率降低的因素。而在萤光材料中则是提高发光效率的因素,因此出光兴产认为“融合(fusion)比消灭(annihilation)更恰当”,所以命名为TTF。不过,理论上材料的内部发光效率最大只有40%,与内部发光效率为100%的TADF有很大差距。出光兴产已经开发出效率接近理论极限的TTF材料,但该公司电子材料部电子材料开发中心主任研究员熊均表示:“不会被理论束缚,还在为进一步提升效率而继续开发。”

  在有机EL照明技术上,除了改善光提取效率和发光材料外,也有一连串旨在提高发光效率和显色指数等的技术开发。比如,在元件构造和制造方法等的技术革新方面,各厂商的创意就是一个夺人眼球的领域。

  说能将“发光单元做成10层”的,是风险企业ASON TECHNOLOGY代表董事社长中川幸和(图1(f)和图9(a))。该公司专务董事松本敏男因与山形大学教授城户淳二因开发了有机EL发光单元重叠起来的元件构造“MPE(multiple photon emission)”而闻名)。将发光单元做成多层的好处是,容易实现高亮度和长寿命以及可大幅改善发光的均匀性。层数增加后,各层的厚度不均在元件整体可以抵消,从而可提高发光的均匀性。在其他公司开始在量产面板中采用MPE技术的情况下,ASON TECHNOLOGY则计划以令MPE有逐步发展的自主技术为武器,2013年开始量产大型有机EL照明面板。(日经技术在线! 供稿)


其他产品
cache
Processed in 0.007971 Second.